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Synopsis 

A mathematical model is developed for the dye leveling process. Good agreement between 
experimental and theoretical data supports the validity of the proposed model. Also, the 
applicability of the proposed model is shown through its effectiveness in predicting leveling 
times, when the working temperature is above the Tg of the fibers. The results demonstrate 
that chain mobility is a prerequisite for rapid leveling, and that morphological changes in the 
fiber during the migration process are important and must be considered. 

INTRODUCTION 

During the dyeing of textile fibers regions of different dye concentration, 
and therefore different color, sometimes occur. Reasons may be as simple 
as blockage of some fibers by being near or in contact with others, or by 
mass transfer problems in the solution or at the fiber-solution boundary 
layer. It is well known that, by retaining the fibers in the bath for a longer 
time under good agitation and fiber separation, the dye tends to desorb into 
the solution from fiber regions of higher dye concentration, and to adsorb 
from the solution onto regions of lower concentration. This process is called 
“leveling,” and results in more uniform color of the dyed material. It may 
be done in the presence of polymer-plasticizing agents known as “carriers,” 
which have the effect of increasing the diffusivity of the dye within the 
fibers by making the polymeric chains more mobile. In the preceeding paper 
we discuss in detail some of the effects of polymer physical structure and 
carrier upon the leveling process. In this paper we develop a mathematical 
model and compare it with experimental leveling data. We are not aware 
of any previous model for the process. 

The leveling experiment modeled involves placing a bundle (0.1-0.3 g) of 
fibers, dyed to equilibrium, in a 100-mL bottle, in which they are separated 
from a similar weight of undyed fibers by a fine screen. A fixed amount of 
a blank liquid medium, initially containing no dye, is added. The liquid is 
agitated by horizontal shaking, and is maintained at 100°C in an oil bath. 
Dye desorbs from the initially dyed fibers into the solution, and some of 
this adsorbs onto and diffuses within the undyed fibers. Experiments are 
run for various times, after which both sets of fibers are analyzed for dye 
content. The entire process is described in greater detail in Paper I. 

In terms of a model, we have the unsteady state diffusion of a solute 
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within and from a cylinder, into an agitated bath, and simultaneously into 
and within a cylinder of overall lower solute concentration. For the overall 
leveling process the desorption and adsorption processes must be considered 
simultaneously; the concentrations within both sets of fibers and within 
the bath are changing as a function of time. 

DEVELOPMENT OF THE MODEL FOR DYE LEVELING 

To develop a model, the leveling process will be considered in two parts: 
(a) diffusion in the dyed fibers and desorption and (b) adsorption and dif- 
fusion within the undyed fibers. The equations for the two parts will then 
be combined and solved simultaneously. 

The dye desorption into a well-stirred solution of limited volume, initially 
free from solute, from a cylinder (fiber) in which the dye concentration is 
initially uniform and equal to Co, represents the opposite case from that 
of diffusion from a finite dyebath. Solutions for such a problem can be found 
in the literature.ls2 For convenience, the solutions are shown in the equa- 
tions below: 

where a = A / r a 2  is the ratio of the volumes of solution and cylinder of 
radius a. If there is a partition factor K between solute in equilibrium inside 
the cylinder, and in the solution, a = A/(tra2K).  zw = amount of solute 
in the solution after infinite time, and Bt the corresponding amount after 
time t. D is the diffusion coefficient. In the migration experiment, a is large; 
eq. (2) presents a satisfactory solution for the desorption process. Also, the 
relationship between a and the final fraction uptake of solute by solution 
is given by 

Carman and Haul2 have derived an alternative equation which is less easy 
to use, but which is accurate up to considerably higher values of MJM,: 

- -  

+- eerfc[ - ?)I]  a a2 (3) 
Y3 + Y4 

where 

(4) 
1 
2 y 3  = -[(l + a)“ + 11, y4 = (y3  - 1>, 
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e = exp x 2  and x corresponds to the expression inside the brackets of erfc 
(complementary error function). Values of exp x 2  erfc x as a function of x 
are found in the literature.' 

A comparison between eqs. (2) and (3) demonstrates that differences occur 
only at high values of zt/zm or of time (Figs. 1 and 2). This difference can 
be corrected by increasing the number of terms of the series in eq. (2). 

The following discussion is concerned with the derivation of an equation 
to describe the absorption case in the migration experiment. The solute, 
which is being released from another fiber, diffuses into the solution and 
finally into the blank fiber. The concentration of the solute in the originally 
dyed fiber is initially homogeneous and equal to C,,. 

Since we are treating the case of a well-stirred solution (shaking bath), 
it is reasonable to neglect the diffusion of the solute in the solution. There- 
fore, we neglect the time elapsed from the solute release from the dyed 
fiber to the solute absorption by the blank fiber. Let us denote the dyed 
fiber by F1. It is known' that the total amount of solute St in the solution 
after time t can be expressed by the equation below: 

where zm, as already defined, is the amount of solute in the solution after 
infinite time (equilibrium state), and the q,s are the positive, nonzero roots 
of (1). Equation (5) is a general form: Eqs. (1) and (2) are simplified solutions 

0 

0 0 . 2  0 . 4  0.6 0.8 1 . 0  

Fig. 1. Dye desorption by a cylinder into a stirred solution of limited volume and initially 
free of solute: a = 26; (0) model; (A) Carman and Haul. 
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Fig. 2. Dye desorption by a cylinder into a stirred solution of limited volume and initially 
free of solute: a = 34; (0) model; (A) Carman and Haul. 

of it. The general form is needed for the absorption case: 

a is defined by eq. (3) and D1 = the F1 fiber's diffusion coefficient. 
At this point we assume that the concentration of solute just within the 

surface of F,, which hereafter denotes the blank fiber, is the same as that 
in the solution and also that, after time t, the amount of solute taken up by 
F2 is negligible compared to the amount of the solute left in the solution. 

This approximation, backed by the experimental results (Figs. 1-3 of 
Paper I of this series) must be made in order to obtain an explicit mathe- 
matical solution. 

By virtue of the above assumptions, the surface concentration C,(t) of F, 
can be defined as 

where Vis the volume of solution in the bath. 

the concentration in F2 is given by' 
If the initial concentration in F, is zero and that at the surface is C,(t), 
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2x (no carr ier )  

” -  I I 

0 40 80 120 180  200 

t (HR) 
Fig. 3. Dye absorption vs. time for the 2 x  fiber from a stirred solution of limited volume 

in absence of benzoic acid (0) experimental; (4 model. 

where D2 is F2’s diffusion coefficient, a = radius of F2 fiber, the an’s are 
the roots of Jo(aan) = 0, and Jo and J1 are Bessel functions of the first kind 
of order 0 and 1, respectively. The an’s values can be found in the literature.’ 

By replacing Co(t) in eqs. (8) and (7) and using the following integral, 

we obtain the following expression: 
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The expression (9) yields the concentration in F2 at time t. 
Therefore, to obtain the amount of solute Mt in F2 after time t ,  we multiply 

the expression (9) by r and integrate over 0 I r <a ,  0 I 8 I 27r, where 
8 corresponds to the cylindrical coordinates: 

2D2Mma 4a(a+l)  + z z  
aV n = l  m = l  4+4a+a2q2, 

exp (- D2a2,t) - exp (Dlq2,t/a2) 

m 

By resorting to the series (1) z (l/a2,) = a 2 / 4  we can finally obtain 
n = l  

The first term on the right-hand side is obtained as follows: 
- - 

z -=44 . r r  M ,  a2 Mm - ma2-  
2 M ,  1 

v 4  V 
2T - 

V n = l a 2 ,  
(11) 

Now, by denoting the final F2 amount of solute T a 2 E /  V by M,,  the 
absorption time curve is given by 

4 - e-Dzazt 4D2 m 4a(a + 1) 
a 2 n = i  a2, a2 n = l m = l 4  + 4a + a2q2, 

= I - -  z - + - z  z 
(12) 

- D2a:t - - Diq:t/az 

D2a2, - Dlq2,/a2 

Looking at expression (121, one can make an interesting comparison be- 
tween our system and the case of absorption of a solute by a cylindrical 
fiber whose initial concentration is zero and whose surface concentration 
is kept constant and equal to Co. Obviously, in our case, the F2 surface 
concentration depends on t. 

Since the expression 

m 4 e-D2a2,t 
1 -  z - -  

n = l a 2  a2, 

in (12) gives the amount of solute taken up by a cylindrical fiber with 
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boundary and initial conditions referred to the case italicized above and 
the last term on the right-hand side of (12) (double series) is always negative, 
we immediately conclude that the absorption process in Fz is slower than 
the one in which the surface concentration is kept constant. By slower, we 
mean that a smaller amount of solute is absorbed after time t. 

COMPARISON OF THE MODEL WITH 
EXPERIMENTAL RESULTS 

In order to examine the validity of the proposed mathematical model 
described above, the experimental data were compared with calculated data 
from the proposed equations. 

First of all, the proposed model that describes the dye absorption by the 
blank fiber with changing surface concentration in a system of finite volume 
is discussed [eq. (1211. 

Then, the general model is tested by comparing the experimental and 
calculated amount of dye left in the medium (water) during the entire 
migration process. Finally we show that this proposed model can be used 
to predict leveling times when the working temperature is above the Tg of 
the fibers. 

It is interesting to note that the proposed model has no adjustable pa- 
rameters-absolute calculation methods are used, including only measured 
values of D from separate infinite dye bath experiments. 

The Absorption Case 

Since the fibers involved in the particular migration experiment have 
been subjected to the same kinds of treatments (heat setting, use or not of 
carrier) and they have the same draw ratios we can expect to obtain D, = 
Dz, where D1 is the diffusion coefficient of the fiber that released dye to 
the medium and D2 is the diffusion coefficient of the fiber which is absorbing 
dye. 

Also, it was considered the diffusion coefficients obtained through Hill’s 
e q ~ a t i o n , ~  which describes an infinite dyebath system, where applicable for 
D1 and consequently Dz. The use of diffusivities from an infinite dyebath 
condition was necessary in order to make the mathematical model more 
general and easy to use. It assumes that the diffusivities are not dependent 
upon the dye concentration. 

Table I shows the diffusivities calculated from infinite dyebath data; these 
were also used in evaluation of eq. (12). Figures 3-6 show the results ob- 

TABLE I 
Diffusivities Calculated from Hill’s Equation (9) Using Infinite Dyebath Data 

D, = Dz (cm2/min) 

Sample draw ratio No carrier Carrier 

2x 
4x 
6 x  

3.23 x 10-9 3.14 x lo-@ 
4.50 x 10-9 
1.09 x 10-9 
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Fig. 4. Dye absorption versus time for the 2 x  fiber from a stirred solution of limited volume 

in presence of benzoic acid (concn 13 g/L): (0) experimental; (4 model. 

4 x  (carrier)  
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Fig. 5. Dye absorption vs. time for the 4x fiber from a stirred solution of limited volume 

in presence of benzoic acid (concn 13 g/L): (0) experimental; (-) model. 
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0 20 40  60  80 100 

t (HR) 
Fig. 6. Dye absorption vs. time for the 6% fiber from a stirred solution of limited volume 

in presence of benzoic acid (concn 13 g/L): (0) experimental; (-) model. 

tained. Agreement between calculated and experimental finite bath dye 
uptake data can be observed. 

The General Model 
As explained before, there is a considerable amount of dye left in the 

water during the migration experiment. There will be a steady increase of 
the amount of dye in the water with time, during the entire migration 
process. 

Therefore, the increased amount of dye in the water with time is expected 
to be predicted by the mathematical models involved, i.e., eqs. (2) and (12). 
The comparison between calculated and experimental data was made in 
the following way: 

From eq. (2), a master curve or a table of BJB, vs. (Dt/u2)" can be 
constructed. Then, the values of Bt, i.e., the amount of dye in the water at 
time t, can be calculated since Zm or amount of dye in water at infinite 
time is known experimentally. The values of diffusion coefficients used were 
those from Table I. As already explained, the use of diffusion coefficients 
determined from an independent experiment is required, in order to avoid 
doubts concerning the validity of the comparison. 

Next, the values of M J M ,  can be determined from eq. (12). Then, Mt or 
the amount of dye taken up by the originally undyed fiber at time t can 
be calculated, since M,,  the corresponding amount at infinite time, is known 
experimentally. B, and M ,  are given by the following expressions: 
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where Mo = the initial amount of dye in the originally dyed fiber. This 
value was obtained from the infinite dyebath experiment at equilibrium. 
M', = the amount of dye in the originally dyed fiber after infinite time for 
diffusion into the bath. Finally, by subtracting Mt from xt the calculated 
values of (%?&lothe amount of dye in the water at a given time is obtained. 

are calculated for the corre- 
sponding times from the experimental curves. For more precision, a large 
scale plot of the experimental curves (Figs. 1-3 of Paper I from this series) 
were constructed. 

Now, the experimental values of 

Where (Milexp = amount of dye in the originally dyed fiber at time t and 
(MJexp = amount of dye in the originally undyed fiber at time t. 

Figures 7-9 show the results. The values for high times, i.e., close to 
equilibrium, are not shown in the figures. The lack of precision for high 
values of time is due to the need for more terms in the series of the eq. (2). 
In order to show a better agreement between calculated and experimental 
data close to equilibrium, a few more points were calculated using the 
Carman and Haul master curve (Figs. 1 and 2). The final result is shown 
in Figure 10. 

2 

1 

0 
0 4 8 1 2  1 6  1 8  

/F mini" 
Fig. 7. Percent of dye in the water vs. (time)" for migration experiment in absence of 

benzoic acid (concn 13 g/L): (0) experimental; (-) model. 
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0 10 2 0  30 40 50 

/F min'" 
Percent of dye in the water vs. (time)" for migration experiment in presence of 

benzoic acid (concn 13 g/L): (0) experimental; (-) model. 
Fig. 8. 

The Leveling Time Prediction 

It was shown in the previous section that eqs. (2) and (12) can accurately 
describe the migration experiments. The next step is to use the proposed 
mathematical models to predict leveling times, which is of value for both 
practical and scientific purposes. 

The migration factor m was defined in the experimental section. m can 
vary from 0 to 1. When m = 1, the leveling time has been reached, i.e., 
the amount of dye in the originally dyed fiber equals the amount of dye in 
the originally undyed one. 

Y 
m 4  - 

2 

1 

0 

0 10 20 30 40 

/F mini" 
Fig. 9. Percent of dye in the water vs. (time)" for migration experiment in presence of 

benzoic acid (0) experimental; (-) model. 
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4 x  ( c a r r i e r )  

4 1  

0 4 a 1 2  16 20 24 2a 

fi (lain)"* 

Fig. 10. Percent of dye in the water vs. (time)Ih for migration'experiment in presence of 
benzoic acid: (0) experimental; (-) model. 

In order to use the mathematical model, only two experiments are nec- 
essary. First, the sample must be dyed to the equilibrium state using an 
infinite dye bath system. This experiment will give the diffusion coefficient 
and Mo, the amount of dye in the originally dyed fiber. The second exper- 
iment measures the dye desorption of this sample. The desorption experi- 
ment must be done to high values of time, approaching equilibrium. This 
second experiment will give the Bm value, the amount of dye in the water 
at infinite time. Then, eq. (14) will give the M ,  value, the amount of dye 
in the originally undyed fiber at  infinite time. 

As for the determination of the amount of dye in the water, a table of 
M J M ,  against (Dt/u2)" can be constructed. Then, the values, or the 
amount of dye in the originally dyed fiber, can be determined from the 
following expression: 

- _  

Next, after determination of the (MJ2 values, the amount of dye at time 
t in the originally undyed fiber from eq. (121, the migration factor for dif- 
ferent times can be determined. 

Figures 11-14 compare the calculated and experimental values for the 
migration experiments in the presence and absence of benzoic acid. Before 
discussing these figures, let us review the model-data correlations we have 
established earlier. 

As was observed in Figures 3-6 the mathematical model [eq. (1211 rep- 
resents the absorption mechanism in the migration experiments very well. 
This equation predicts the amount of dye being absorbed by a blank fiber 
in a finite system where the source of dye is another fiber. 

The general mathematical model represented the migration experiment 
nicely as well. This was proven by predicting the amount of dye left in the 
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Fig. 11. Migration factor vs. (time)" for the fiber drawn 2x: (0) experimental; (A) model. 

bath (water) with time. The agreement between experimental and calcu- 
lated data was shown in Figures 7-10. 

Figure 9 gives the percent of dye in water as a function of square root 
of time for the sample of lower draw ratio. This migration experiment was 
carried out in absence of carrier and this fact means the working temper- 
ature was below the T, of the fiber. If it is assumed no structural modifi- 
cations of this fiber during the time of the experiment occur, it can be said 

m line 1 l i n e  2 
1 . 0  

0.8 

0.6 

0.4 

0 . 2  

1 
I I:' / . 1 

0 

0 20 40 60 80 100 

fi  (nin)'" 
Migration factor vs. (time)" for the fiber drawn 4x: (0) experimental; (A) model. Fig. 12. 
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Fig. 13. 

m l i n e  1 l i n e  2 

1 . 0  

0.8 

0 . 6  

0 .4  

0 . 2  

0 

Migration 

20 40 6 0  80 100 0 

f i  (min)'" 
factor vs. (time)" for the fiber drawn 6 x :  (0) experimental; (I, model. 

that the discrepancy between theoretical and experimental data observed 
is due to the incorrect supposition of Fickian diffusion for this sample. The 
general diffusion below Tg is usually n~n-Fickian.~ The model is predicting 
a higher amount of dye in the water than is found. Such an amount would 
be expected if chain flexibility was controlling the process, as occurs above 

An evaluation of Figures 11-14 indicates again that the mathematical 
model can predict leveling times only for the cases where the working 

Tg. 

m 

0 20 40  60 80  100 

R (rnin)'" 
Migration factor vs. (time)" for the fiber drawn 2r :  (0) experimental; (A) model. Fig. 14. 
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TABLE I1 

1693 

~~ 

Leveling times (h) 

No carrier Carrier 

Sample draw ratio Model Expt Model Expt (a) Expt 6) 
2x 39 167 9 11 41 
4x - - 22 26 126 

- 64 66 163 62 

“Taken from line 1. 
Taken from line 2. 

- 

temperature was above or very close to the Tg of the samples. Also, these 
figures demonstrate that the model cannot predict the effects of structural 
changes associated with a long heating time for the fibers. 

Figures 11 and 12 indicate that, for times up to 7 h and 15 h for the 
samples of draw ratio 2x and 4x, respectively, a good agreement between 
experimental and calculated data is obtained. After these times a steep 
deviation from an extrapolation line (line 1) of the experimental data occurs. 
This break point produces another continuing line (line 2) resulting in longer 
leveling times than predicted by the model. The linearity of this second 
line is indicative of progressive structural modifications associated with the 
plasticizing effect of benzoic acid in these fibers under long heating times. 
Leveling can be more easily reached when chain mobility is increased, but 
structural stability of the fiber is also an important factor and must be 
considered. The degree of structural stability has been shown to be higher 
in the sample of higher draw ratio ( 6 ~ ) .  Figure 13 shows that the deviation 
from line 1 occurred only after 50 hours under constant heat for this sample. 

In all three cases, if no structural modifications had occurred, the ex- 
perimental data would be expected to follow the dashed lines indicated as 
line 1. At m = 1, line 1 gives the experimental leveling time if structural 
change had not occurred. These experimental values are shown in Table 
11, and are very close to the calculated values. 

Finally, Figure 14 demonstrates that when the working temperature is 
below the Tg of the fiber, the model cannot predict leveling times. Since 
there is no indication of structural modifications due to long heating times, 
this result suggests once more that the Fickian diffusion used in this pro- 
posed mathematical model is normally observed in the case of penetrants 
in polymers above Tg. 
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